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Genetics 101 
Human 

DNA 

Sequence 

• A series of 3 billion 

letters where each letter 

is A, C, T, G 

 

• Humans differ by 0.1% 

of their DNA 
• Make us all different 

• called “genetic 

variants” 

 

• Majority of differences 

are SNPs (single 

nucleotide 

polymorphisms) 
• Single base change 

• ~10 million SNPs in 

human genome 

Another 

Sequence 



Genetic variants cause differences in traits 

• Humans are different because of genetic variants (also due to environment) 

• For example, some SNP may cause people to have different hair 

www.23andme.com/gen101/

snps 

• Some SNPs may cause people to have diseases more easily than others 

• How can we find genetic variants (or SNPs) that cause these differences in 

traits or diseases? 

• Important to uncover the roles of genetics in traits and diseases 

• One way is to perform “association study” 



Association study 

• We compute correlation (association statistic) between SNP and a disease 

– Association statistic is based on allele freq. difference (            ) 

– The larger the difference, the higher the correlation 

• If correlation is above certain threshold, SNP is associated with a disease 

• But, out of many SNPs (10 millions), how do we choose which SNP to test in 

association study? 
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cases: people 

with a disease 

controls: people 

w/o a disease 

AAAGACCGA 

GATTATCCG 

ACAGATCCG 

GATGACACA 

ACTTACCCG 

ACATCCAGG 

AAAGACAGA 

AAATATACG 

AAAGATCGA 
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SNPs 



Genome-wide Association Studies (GWASs) 

• Collect many SNPs (~1 million) over the whole genome 

• Compute correlation between each SNP and a disease (perform 

“association study” on each SNP) 

• Find SNPs whose correlations are above the threshold 

Wang, K., Zhang, H., Ma, D., Bucan, M., et al. Common genetic variants on 5p14.1 associate with autism 

spectrum disorders. Nature 459, 528-533 (2009). 

• A peak in the plot means a strong association between SNP and a disease 

• Results of more than 1,600 GWASs have been published 



Fine-mapping 

• Post-GWAS challenge 

• Given an associated region, which gene/variant is 

actually causal? 

 

 



Major Histocompatibility Complex 

• Displays antigen peptides 
to cell surface for T-cells 

 

• Critical role in all 
immune diseases, 
including type 1 diabetes 

 



Fine-mapping HLA genes in MHC 

• The strongest hit in GWAS for many immune 
diseases 

• 8 classical HLA genes code MHC molecules 
– Which HLA gene is driving the disease? 

– Which amino acid variation is driving? 

• Association & fine-mapping are difficult 
– Why? 

 

 

Fine-mapping 



Fine-mapping difficulties in MHC 

• HLA genes are highly polymorphic – can’t genotype 

SNP Microarray 

• Flanking sequence doesn’t 
bind 

• Only works for intergenic 
SNPs 

Next-gen sequencing 

• Doesn’t align to 
reference genome 

HLA typing 

• Expensive 
• >$1,000 for 4-digit typing 

of 8 genes (in Korea) 

$$ 



HLA fine-mapping was practically impossible 

Oh, we found the strongest signal at MHC in our 

GWAS.  

 

This is very interesting. 

Well, but we can’t figure out which HLA gene is 

driving the signal and which amino acids are 

causal. 

  

We can’t get the DNA sequence of HLA genes.  

 

HLA typing will take 10 million dollars. 
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Our idea: impute HLA genes based on 

intergenic SNPs! 

 SNP2HLA: HLA imputation software 

 95% accuracy at 4-digit 

 5,000 European reference panel 

 900 Asian reference panel 

Method:  

Jia* and Han* et al.  

PLOS One 2013 

Application to RA:  

Han et al.  

AJHG 2014 

Application to PS:  

Okada* and Han* et al. 

AJHG 2014 

 

HLA typing 

10 million 

dollars 



SNP2HLA: Overview  



Standard Hidden Markov Model for Imputation 
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 Transition probability based on recombination rate 

 Emission probability based on mutation / error rate 



SNP2HLA Hidden Markov Model 

Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 
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 To account for k multi-alleles, define k binary markers 

 Total >3,000 HLA binary markers  

*01:04 

*04:01 

*02:01 

AA 9#A 

AA 9#S 

AA 9#V 

*01:01 

*03:01 

*11:05 

SNP7#A 

SNP7#G 

SNP7#G 



SNP2HLA output allows testing of many 

features of HLA 

18 

Impute full-length nucleotide sequences 

for all classical HLA alleles 

..TTG GAG CAG GTT AAA CAT GAG TGT CAT TTC.. *04:01

..CTG TGG CAG CCT AAG AGG GAG TGT CAT TTC.. *15:01

..TTG TGG CAG CTT AAG TTT GAA TGT CAT TTC.. *01:02

..TTG AAG CAG GAT AAG TTT GAG TGT CAT TTC.. *09:01

..TTG GAG TAC TCT ACG TCT GAG TGT CAT TTC.. *03:01

etc...

classical allele

Example: HLA-DRB1

19 

Impute full-length nucleotide sequences 

for all classical HLA alleles 

..TTG GAG CAG GTT AAA CAT GAG TGT CAT TTC.. *04:01

..CTG TGG CAG CCT AAG AGG GAG TGT CAT TTC.. *15:01

..TTG TGG CAG CTT AAG TTT GAA TGT CAT TTC.. *01:02

..TTG AAG CAG GAT AAG TTT GAG TGT CAT TTC.. *09:01

..TTG GAG TAC TCT ACG TCT GAG TGT CAT TTC.. *03:01

etc...

SNP

Example: HLA-DRB1

20 

Impute full-length nucleotide sequences 

for all classical HLA alleles 

..TTG GAG CAG GTT AAA CAT GAG TGT CAT TTC.. *04:01

..CTG TGG CAG CCT AAG AGG GAG TGT CAT TTC.. *15:01

..TTG TGG CAG CTT AAG TTT GAA TGT CAT TTC.. *01:02

..TTG AAG CAG GAT AAG TTT GAG TGT CAT TTC.. *09:01

..TTG GAG TAC TCT ACG TCT GAG TGT CAT TTC.. *03:01

etc...

codon

Example: HLA-DRB1

Impute full-length amino acid sequences 

for all classical HLA alleles 

cases controls

T 

.. L   E   Q   V   K   H   E   C   H   F .. *04:01

.. L   W   Q   P   K   R   E   C   H   F .. *15:01

.. L   W   Q   L   K   F   E   C   H   F ..  *01:02

.. L   K   Q   D   K   F   E   C   H   F .. *09:01

.. L   E   Y   S   T   S   E   C   H   F .. *03:01

amino acid position

etc...

 Unbiased & Simultaneous testing of HLA genes / amino 

acids / and SNPs 



Imputation 

SNP2HLA software (Jia* and Han*, PLOS One 2013) 

New tool for imputing HLA genes  

HLA Typing 

Microarray 
VS 

Expensive Economical 

Currently being used by many studies to discover disease-driving HLA alleles 



Publications using SNP2HLA since 2014 
Trait Publication My role 

Seronegative RA Han et al. AJHG 2014 Led the analysis 

Psoriasis Okada* and Han* et al. AJHG 
2014 

Led the analysis 

Pan-Asian analysis Hum Mol Gen 2014 Co-author 

HCV infection Gut 2014 

Idiopathic achalasia Nature Gen 2014 

Seropositive RA (Asian vs European) Hum Mol Gen 2014 

Pancreatitis induced by thiopurine 
immunosuppressants 

Nature Gen 2014 

Follicular lymphoma  AJHG 2014 

Enteric fever Nature Gen 2014 Co-author 

Systemic lupus erythematosus Nature Comms 2014 Co-author 

Inflammatory bowel disease Nature Gen 2015 

Narcolepsy protection AJHG 2015 

Marginal zone lymphoma Nature Comms 2015 

Alopecia areata Nature Comms 2015 

Psoriatic arthritis Nature Comms 2015 

Type 1 diabetes Nature Genetics 2015 Co-author 



Published in 2015 August (2 months ago) 
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Type 1 diabetes 

• World-wide prevalence < 1%; ~ 1 million in US 

 

 

 

 

 

 

 

 

• Early onset; no gender bias 

• Treatment: insulin replacement 

• ~15 billion$ annual treatment 

World-wide Incidence 

http://www.who.int/genomics/about/Diabetis-fin.pdf 



HLA in T1D 

Narrow-sense heritability ~74% 

- HLA ~35% (Speed et al. 2012 AJHG) 

- Main locus: HLA-DRB1-DQA1-DQB1 
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Hypothesis: amino acid polymorphisms 

drive haplotypic association 

• Long-standing hypothesis: amino 

acids in the peptide-binding 

grooves alter antigen presentation 

• Classical alleles defined by 

combinations of amino acid 

residues 

Known haplotypic associations 

Noble et al. 2007. Cold Spring Harb Perspect 

• Best known amino acid: 

DQβ1#57 (Todd et al. 1987. 

Nature); cannot explain all the risk 



Problems: polymorphism and LD 

• Difficult to fine-map 

• Highly polymorphic (~12,000 alleles)  

• Extensive linkage disequilibrium 

 

Adapted from Petersdorf. 2013. Blood 



HLA Imputation 
• Impute 2- and 4-digit classical alleles & amino acids 

– SNP2HLA 

– T1DGC reference panel (5225 typed European samples) 

Jia & Han et al. 2013. PLoS ONE 



Dataset (T1DGC) 

• 18,832 samples from UK 

– 8,095 cases  

– 10,737 controls 

– 13 geographical regions 

• Eight HLA genes 

• 8617 binary variants (>0.05%) 

• 260 classical alleles 

• 399 amino acid positions 

 

Accurate imputation 

R2 (Beagle) 

C
o
u
n
t 

Mean = 0.986, median = 1 



Statistical framework 

• Logistic regression 

 

   

 

      x = genotype/dosage 

      y = region covariates 

      z = sex covariate 

ln(odds j ) ~ bo + b1, jx j +
j=1

m-1

å b2,kyk +
k=1

c-1

å b3z

DDeviancealt-null = -2ln(likelihoodalternative likelihoodnull )

null 



Top signal - DQβ1#57 (best-known) 
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Amino acid positions (omnibus test) 

Amino acid position 
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Conditional analysis by forward-search  

Test for AA2 
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DRβ1#13 & #71 

Amino acid position 

DQA1 DQB1 

DQA1*02:01  

(p = 10-432) 

DRB1*04:01 

(p = 10-78) 
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To confirm the associations 

• Genotyping errors/imputation uncertainty could introduce 

noise as signal strength decreases 

 

• Forward-search may converge on local minima 

– Solution: exhaustively test all combinations 



Exhaustive testing 

AA1	 AA2	 DeltaDeviance	 df	 log10(p)	

AA_DQB1_57	 AA_DRB1_13	 9661.011751	 19	 -2071.62	

AA_DQB1_57	 AA_DRB1_11	 9404.827094	 18	 -2017.46	

AA_DQB1_57	 AA_DRB1_37	 9324.046636	 15	 -2004.12	

AA_DQA1_47	 AA_DQB1_57	 9245.520421	 10	 -1994.36	

AA_DQB1_57	 AA_DRB1_9	 9111.50804	 9	 -1966.80	

AA_DQA1_52	 AA_DQB1_57	 9032.194409	 8	 -1951.13	

AA_DQB1_57	 AA_DRB1_74	 8768.560717	 15	 -1883.67	

AA_DQB1_57	 AA_DRB1_181	 8564.448428	 8	 -1849.63	

AA_DQB1_57	 AA_DRB1_67	 8533.010207	 11	 -1838.30	

AA_DQB1_57	 AA_DRB1_140	 8501.312677	 7	 -1837.49	

DQβ1#57+DRβ1#13: Best of 9,870 pairs 

DQβ1#57+DRβ1#13+DRβ1#71: Best of 457,450 trios 
AA1 AA2 AA3 DeltaDeviance df log10(p)

AA_DQB1_57 AA_DRB1_71 AA_DRB1_13 10148.52492 31.00 -2161.52

AA_DQB1_57 AA_DRB1_86 AA_DRB1_13 10124.62638 29.00 -2158.89
AA_DQB1_-18 AA_DRB1_71 AA_DRB1_37 10045.15659 25.00 -2146.85
AA_DQB1_57 AA_DRB1_74 AA_DRB1_11 9987.049638 31.00 -2126.56
AA_DQB1_75 AA_DQB1_-18 AA_DRB1_13 9938.438515 26.00 -2122.43
AA_DQB1_74 AA_DQB1_-18 AA_DRB1_13 9943.814444 27.00 -2122.30
AA_DQB1_26 AA_DQB1_-10 AA_DRB1_13 9937.416871 26.00 -2122.21

AA_DQB1_26 AA_DQB1_-18 AA_DRB1_13 9937.416871 26.00 -2122.21
AA_DQB1_57 AA_DRB1_86 AA_DRB1_37 9941.233586 27.00 -2121.74
AA_DQB1_57 AA_DRB1_74 AA_DRB1_13 9962.368443 31.00 -2121.21

4th independent signal: DQβ1#-18 (p = 10-40, signal peptide): 

 Many better combinations in exhaustive test 



Amino acids in peptide-binding groove 
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Associations outside of 

DRB1-DQA1-DQB1  
 

• HLA-B:  

 B*39:06, B*50:01, B*18:01, 

etc 

 

• HLA-DPB1:  

 DPB1*04:02, DPB1*01:01, 

etc 

 

• HLA-A:  

 #62, A*03, A*24:02, etc 

 

• No independent signal in 

HLA-C or  HLA-DPA1 



Phenotypic variance explained 
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DRB1-DQA1-DQB1 (30.3%) 

INS (3.3%) 

PTPN22  

(0.78%) 

DPB1 (1.49%) 
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B (1.02%) 

DQβ1#57,DRβ1#13,DRβ1#71 (27.0%) 
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DQβ1#57+DRβ1#13+DRβ1#71 explains 

• 90% of the variance in DRB1-DQA1-DQB1 

• 80% of all of the HLA 



Conclusion 

• We developed HLA imputation tool, SNP2HLA. 

 

• When applied this tool to T1D data, we 
identified that three amino acid positions are 
driving the traditional DRB1-DQA1-DQB1 
allelic associations. 
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